A Modified Barrier-Augmented Lagrangian Method for Constrained Minimization
نویسندگان
چکیده
We present and analyze an interior-exterior augmented Lagrangian method for solving constrained optimization problems with both inequality and equality constraints. This method, the modified barrier—augmented Lagrangian (MBAL) method, is a combination of the modified barrier and the augmented Lagrangian methods. It is based on the MBAL function, which treats inequality constraints with a modified barrier term and equalities with an augmented Lagrangian term. The MBAL method alternatively minimizes the MBAL function in the primal space and updates the Lagrange multipliers. For a large enough fixed barrier-penalty parameter the MBAL method is shown to converge Q-linearly under the standard second-order optimality conditions. Q-superlinear convergence can be achieved by increasing the barrier-penalty parameter after each Lagrange multiplier update. We consider a dual problem that is based on the MBAL function. We prove a basic duality theorem for it and show that it has several important properties that fail to hold for the dual based on the classical Lagrangian.
منابع مشابه
Log-Sigmoid Multipliers Method in Constrained Optimization
In this paper we introduced and analyzed the Log-Sigmoid (LS) multipliers method for constrained optimization. The LS method is to the recently developed smoothing technique as augmented Lagrangian to the penalty method or modified barrier to classical barrier methods. At the same time the LS method has some specific properties, which make it substantially different from other nonquadratic augm...
متن کاملInexact accelerated augmented Lagrangian methods
The augmented Lagrangian method is a popular method for solving linearly constrained convex minimization problem and has been used many applications. In recently, the accelerated version of augmented Lagrangian method was developed. The augmented Lagrangian method has the subproblem and dose not have the closed form solution in general. In this talk, we propose the inexact version of accelerate...
متن کاملThe boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large the subproblem is difficult, therefore the effectiveness ...
متن کاملVariational Sar Image Segmentation Based on the G0 Model and an Augmented La- Grangian Method
This paper present a fast algorithm for synthetic aperture radar (SAR) image segmentation based on the augmented Lagrangian method (ALM). The proposed approach considers the segmentation of SAR images as an energy minimization problem in a variational framework. The energy functional is formulated based on the statistical characteristic of SAR images. The total variation regularization is used ...
متن کاملGlobal minimization using an Augmented Lagrangian method with variable lower-level constraints
A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the εk-global minimization of the Augmented Lagrangian with simple constraints, where εk → ε. Global convergence to an ε-global minimizer of the original problem is proved. The subproblems are solved...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 14 شماره
صفحات -
تاریخ انتشار 1999